Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Xuanhua Chen, ${ }^{\text {a,b }}$ Rongwei Guo ${ }^{\mathrm{a}, \mathrm{b} *}$ and Zhongyuan Zhou ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail:
98900496r@polyu.edu.hk

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.059$
$\omega R$ factor $=0.155$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

## Methyl (E)-3-acetamido-2-pentenoate

The title compound, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$, is an $E$ isomer and there are two molecules in the asymmetric unit. The molecules are assembled into chains, along the $a$ axis, via intermolecular interactions.

## Comment

The title compound, (I), is one of the products obtained from reaction of methyl 3-amine-2-pentenoate with acetic anhydride under reflux for 24 h . This prochiral olefin is a model substrate studied in the asymmetric hydrogenation reaction (Hackler \& Wickiser, 1985; Lubell et al., 1991).

(1)

The structure determination of (I) was conducted in order to obtain more stereochemical information about the behaviour of these kinds of substrates in hydrogenation reactions. The crystal structure of (I) contains two independent molecules in the asymmetric unit (Fig. 1). A pairwise comparison between these two molecules shows no significant differences in their bond lengths or angles, although the conformations of the two molecules are different. The $\mathrm{C} 1-\mathrm{C} 2$ bond distance of 1.338 (3) $\AA$ is indicative of double-bond character. The angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\left[125.1(2)^{\circ}\right]$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5\left[124.8(2)^{\circ}\right]$ are larger, and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5\left[112.0(2)^{\circ}\right]$ smaller than $120^{\circ}$. This results in a close mutual repulsion between the ethyl group on C 1 and carbonyl group on C3.


Figure 1
The molecular structure of (I), showing ellipsoids at the $50 \%$ probability level (Siemens, 1995).

Received 1 November 2002
Accepted 20 November 2002 Online 30 November 2002

The molecules are interconnected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding in the crystal (Table 2). As illustrated in Fig. 2, the hydrogen bonding links the molecules along the $a$ axis.

## Experimental

The title compound was synthesized according to the literature (Zhu et al., 1999). A crystal suitable for X-ray analysis was slowly grown in a mixed solvent of ethyl acetate and hexane at room temperature. ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , acetone- $d_{6}$, Bruker): $\delta 1.09-1.12(t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $2.06(s, 3 \mathrm{H}), 2.71-2.77(q, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(s, 3 \mathrm{H}), 6.87(s, 1 \mathrm{H})$, 8.75 ( $b r, 1 \mathrm{H}$ ).

## Crystal data

$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$
$M_{r}=171.19$
Monoclinic, $P 2_{1} / n$
$a=9.718(7) \AA$
$b=12.673(9) \AA$
$c=15.653(7) \AA$
$\beta=104.825(15)^{\circ}$
$V=1864(2) \AA^{\circ}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.220 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2920 \\
& \quad \text { reflections } \\
& \theta=1-27.5^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Needle, colorless } \\
& 0.38 \times 0.12 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Siemens SMART CCD areadetector diffractometer

## $\varphi$ and $\omega$ scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.965, T_{\text {max }}=0.991$
12544 measured reflections

> 4308 independent reflections
> 1544 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.057$
> $\theta_{\max }=27.6^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-15 \rightarrow 16$
> $l=-16 \rightarrow 20$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.156$
$S=1.06$
4308 reflections
223 parameters

H -atom parameters constrained
H -atom parameters constra
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| $\mathrm{O} 1-\mathrm{C} 3$ | $1.190(3)$ | $\mathrm{O} 4-\mathrm{C} 11$ | $1.198(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{O} 3-\mathrm{C} 7$ | $1.219(3)$ | $\mathrm{O} 6-\mathrm{C} 15$ | $1.222(3)$ |
| $\mathrm{N} 1-\mathrm{C} 7$ | $1.355(3)$ | $\mathrm{N} 2-\mathrm{C} 15$ | $1.356(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1$ | $1.391(3)$ | $\mathrm{N} 2-\mathrm{C} 9$ | $1.388(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.338(3)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.334(3)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.445(4)$ | $\mathrm{C} 10-\mathrm{C} 11$ | $1.443(3)$ |
|  |  |  |  |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ | $124.8(2)$ | $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$ | $129.4(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$ | $112.0(2)$ | $\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$ | $109.7(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $125.1(2)$ | $\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$ | $123.0(2)$ |
| $\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$ | $120.9(3)$ | $\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$ | $121.7(2)$ |
|  |  |  |  |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $-176.8(3)$ | $\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$ | $-179.4(2)$ |
| $\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $2.6(4)$ | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 3$ | $-4.0(5)$ |
| $\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{O} 1$ | $0.3(4)$ | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ | $175.5(3)$ |



Figure 2
Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6$ | 0.86 | 2.11 | $2.967(3)$ | 173 |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots$ O3 $^{\mathrm{i}}$ | 0.86 | 2.08 | $2.936(3)$ | 174 |

Symmetry code: (i) $x-1, y, z$.
H atoms were included in the riding-model approximation, with $U_{\text {iso }}$ values equal to $U_{\text {eq }}$ of the atom to which they are bound.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995) and SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Hong Kong Polytechnic University ASD Fund for financial support of this study.

## References

Hackler, R. E. \& Wickiser, D. I. (1985). UK Patent GB 2141712.
Lubell, W. D., Kitamura, M. \& Noyori, R. (1991). Tetrahedron: Asymmetry, 2, 543-554.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SAINT (Version 5.0), SMART (Version 5.0) and SHELXTL$N T$ (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhu, G. X., Chen, Z. G. \& Zhang, X. M. (1999). J. Org. Chem. 64, 6907-6910.

